Web Capacity Analysis Tool
WCAT 6.1 User’s Guide

Company:
Microsoft Corporation

Last Updated:
April 12, 2007

Contents

3Section 1. Product Overview

4Section 2. Performance and Capacity Testing Methodology

4Section 3. Setting Up a Test Environment

5Software Components

6Single Machine Environment

6Dual Machine Environment

6Multiple Machines Isolated Environment

7Determining the Number of WCAT Client Machines

8Configuring the WCAT Controller/Network Router

11Section 4. Quick Start

11Installing WCAT

12Running WCAT

12Interpreting WCAT Output

13Best Practices

13Section 5. Running WCAT

13Prerequisites for WCAT

13Using wcat.wsf to control WCAT

15Wcctl.exe command line options

16Input File Parameters

16Settings File Override Parameters

17Scenario File Override Parameters

17Output File Parameters

17Miscellaneous Parameters

18Section 6. WCAT Fundamentals 101

18WCAT Clients and Virtual Clients

18The Scenario File and the Client File

18Scenarios, Transactions, Requests and Weights

19Cookies in WCAT

19Large POSTs in WCAT

19Controlling Connections in WCAT

21HTTPS in WCAT

21Redirections in WCAT

21Authentication in WCAT

23Performance Counters in WCAT

25Section 7. Configuration File Syntax

25Overview

25Elements

25Attributes

26Comments

26Strings

26Functions

27Section 8. Settings File

27Overview

27Root Element (settings element)

27counters element

28registry element

29Section 9. Scenario File

29Overview

29Root Element (scenario element)

30library element

31function element

32handler element

32global element

33default element

33transaction elements

34request element

38setheader and addheader elements

38branch element

39goto element

39close element

40sleep element

41cookies element

41Section 10. WCAT Internal Functions

41Overview

41rand(x, y)

41server ()

42clientname()

42clientcount()

42vclientcount()

42clientindex()

43vclientindex()

43starttime()

43add(x, y)

43subtract(x, y)

43multiply(x, y)

44divide(x, y)

44Section 11. Extending WCAT Functionality

44WCAT Return Codes

45User Functions

47User Cleanup Functions

47Cleanup Function Invocation Order

49Response Handlers

50Using WCAT Context

51Section 12. Interpreting WCAT Output

51Opening a WCAT XML File

51Summary Section

52QFE Section

52Performance Counters Section

52Registry Settings Section

52Response Time Analysis Section

52Transaction Statistics Section

52Per-Client Breakdown Sections

53Server Information Section

53Test Information Section

53Appendix A: HTTP Requests

54Appendix B: HTTP Responses

55Appendix C: HTTP Request Verbs

56Appendix D: HTTP Request Headers

56Appendix E: HTTP Response Status Codes

57Appendix F. Example Settings File

58Appendix G. Example Scenario File

59Appendix H. Http References

Section 1. Product Overview

Web Capacity Analysis Tool (WCAT) is a lightweight HTTP load generation tool primarily designed to measure the performance of a web server within a controlled environment. WCAT can simulate thousands of concurrent users making requests to a single web site or multiple web sites. The WCAT engine uses a simple script to define the set of HTTP requests to be played back to the web server. Extensibility is provided through plug-in DLLs and a standard, simple API.
Key Features:

1. HTTP 1.0 and HTTP 1.1 capable

2. IPv6

3. Multithreaded

4. Supports generating load from multiple machines

5. Extensible through C plug-in DLLs

6. Performance Counters
7. Measures throughput and response time

8. SSL

9. NTLM Authentication

10. Easily supports thousands of concurrent users

Not Supported in this Release:

1. Passport Authentication

2. Kerberos Authentication

3. Network Latency Simulation

4. Managed Code Extensibility (C# or JScript.Net)

WCAT was written by the Windows Server Performance Team, a small group of developers working at Microsoft dedicated to improving the performance of all Windows Server platform technologies. It is mostly used to measure the impact on performance of various code changes to various Microsoft web platform technologies such as the Microsoft Windows kernel, Windows Networking Stack, Internet Information Server (IIS), Microsoft .Net Common Language Runtime, ASP.Net, etc. It is also useful for generating simulated HTTP traffic to real web sites in order to approximate capacity and identify performance bottlenecks before deploying new code to a live web site. It was designed to work well in an automated test environment.
Section 2. Performance and Capacity Testing Methodology
Solid testing methodology is required for performance analysis and development work. Typical performance work must begin with a set of targeted scenarios and performance requirements. The first step to identify the right scenarios is to identify typical usage patterns. For example, a common user operation on a site like live.com would be a root request followed by a keyword search and perhaps some browsing of returned results. Other common scenarios might include navigating to other parts of live.com such as the maps site or the new section. After identifying the common usage patterns and how often they occur, a reproducible test needs to be created. This is where WCAT or some other load generation software comes into the picture. WCAT can be used to simulate load on a web server in a very reproducible manor. A dedicated test environment (not a live deployment) should be created and the server under test should be placed under load.

Once a controlled test environment has been created and load is simulated, analysis of the characteristics of the web server can begin. After gathering data related to all the most important system resources on the web server (disk, CPU, memory and network) the bottleneck resource should be identified. Depending on which resource is limiting system performance, different performance work will result. For example, if the CPU on a web server is saturated then identifying and optimizing CPU bound algorithms would have the largest impact on overall performance. If network is restricting system throughput then reducing round trips or content size will improve performance.
Any changes to the web server should be measured carefully against a baseline configuration without the change in order to verify the impact that the change has. After each change, a new round of analysis can be performed leading to new performance improvements. This cycle should continue until all performance requirements have been met.

Section 3. Setting Up a Test Environment

WCAT is designed to run in a controlled, isolated test environment. This section describes three different example configurations that have benefits and drawbacks. The cheapest and most simple environment is a “single machine” test environment. On a single machine, the load generation occurs on the web server machine itself. The drawback of this is that WCAT will consume some percentage of the resources on the web server and measured capacity will be lower than real capacity. In a “dual machine” environment, WCAT generates HTTP traffic from a second machine. The advantage of this is that measured web server capacity will be more accurate than the single machine environment. Finally, for very powerful web servers it may be necessary to use multiple client machines in order to fully maximize the web server’s resources. For these situations a “multiple machines” environment is recommended.
Software Components
Typical WCAT test environments consist of four to five significant software components that are capable of being run concurrently on a single machine or on separate machines. These components are the Web Server, Database Server (optional), WCAT Controller and WCAT Client. A fifth component exists for the multiple machine isolated environment called the Network Router.
	
	Software Component
	Description

	
[image: image1.emf]
	Web Server
	This is the system under test. The web server software can be any version of IIS, Apache, etc… as long as it is an HTTP compliant web server. Typically the web server will be configured with some web content such as a collection of ASP.Net applications, some graphics files, text files, etc.

	
[image: image2.emf]
	Database Server

(optional)
	Some web server applications require a database backend to work. This database should be loaded with test content.

	
[image: image3.emf]
	WCAT Controller
	The WCAT Controller sends signals to WCAT Client software to start or stop HTTP load generation, gathers performance counters and consolidates all data gathered by WCAT Client software into a single aggregate report.

	
[image: image4.emf]
	WCAT Client
	The WCAT Client software generates HTTP load directly against the web server(s). WCAT Client software is controlled through the WCAT Controller.

	
[image: image5.emf]
	Network Router

(isolated environment only)
	For isolated environments, the network router acts as a DHCP server, DNS server and Network router. The most important function that the Network Router provides is network isolation. It is attached to both the private network and a public corporate network or the internet. It allows no external traffic into the private network while still allowing machines on the private network to access resources such as the internet or network shares on a corporate network. It also gives the capability of creating multiple private subnets in order to distribute load from multiple WCAT Client machines to multiple network interfaces on the Web Server.

Single Machine Environment

	Network and Software Configuration Diagram

	
[image: image6.emf]Public

Network

Web Server

Database Server

WCAT Controller

WCAT Client

Single Machine Environment
The single machine environment is the simplest test environment. It is also the cheapest. It comprises of a single machine with all four of the basic software components running concurrently. The web server content is local along with a database if necessary. WCAT controller and client software are run on the web server machine itself.
WARNING: This configuration is not recommended. The drawback to a single machine environment is that the database and WCAT both consume significant resources on the server. Therefore, the measured capacity of the web server may be different than the true capacity of the system. Also, running all software components locally masks latency and potential bottlenecks that could be caused by the network.

Dual Machine Environment

	Network and Software Configuration Diagram

	
[image: image7.emf]Public

Network

Database Server

WCAT Controller

WCAT Client

Web Server

Network Switch

Dual Machine Environment
The dual machine environment is the simplest environment that provides accurate measurements of a web server’s performance capacity. It consists of a single dedicated web server and another machine that runs the rest of the software components. The drawback to this environment is that the resources on the WCAT machine need to be monitored to ensure that it is not bottlenecking the system.

Multiple Machines Isolated Environment

	Network and Software Configuration Diagram

	
[image: image8.emf]Public

Network

Web Server

Database Server

Network Switches

WCAT Clients

WCAT Controller

Network Router

WCAT Clients

Multiple Machines Isolated Environment
The multiple machines, isolated environment is the recommended configuration for enterprise and commercial capacity testing. The network isolation guarantees that external factors such as random network traffic cannot affect the results of tests. Creating an environment where the number of WCAT Client machines can be easily increased will allow flexibility in testing for newer or upgraded hardware. This configuration also includes instructions on how to enable traffic over multiple network adapters on a web server.

Determining the Number of WCAT Client Machines

An ideal WCAT test environment will contain an adequate number of WCAT Client machines such that the CPU or disk of the Web Server can be fully saturated. Selecting the right number of WCAT Client machines is a chicken-and-egg type of problem. The number of WCAT Client machines required will depend on the capacity of the web server hardware and the resource requirements of the web site content. However, the capacity of the Web Server is unknown until WCAT is run. The recommended approach for determining the right number of WCAT Client machines consists of the following steps:
1. Configure a simple environment: Configure the Web Server hardware and software in a “Dual Machine Environment” (as described in above) with the exclusion of the Database Software. Place the Database Software on a third machine, preferably on hardware that will be used in a production environment. At first use only a single network adapter on the Web Server.
2. Run WCAT: Run WCAT and record CPU, memory, network utilization on all three machines during the run. This can be done by adding performance counters for all three machines to the Settings File (details on how to do add performance counters and which ones to use are in the “Performance Counters in WCAT” Section). Start with a high number of total virtual clients, somewhere around 100 to 1000.
3. Check network utilization on the Web Server: If the Web Server’s network adapter is saturated (greater than 80% is a good rule of thumb) then consider using a higher capacity adapter OR using multiple network adapters simultaneously. Add network bandwidth to the Web Server until it is no longer saturated.
note: at least one WCAT client machine is required per network adapter on the web server for the recommended configuration.

4. Increase number of WCAT client machines until CPU on the Web Server is saturated:
a. Check CPU on the Web Server and Database Server: If CPU is fully utilized on the Web Server or the Database Server, then the configuration is sufficient.

a. Check CPU utilization on the WCAT Client Machine(s): If CPU is saturated on the WCAT Client machine(s) then more machines should be added. Add machines until the CPU is no longer saturated on the WCAT Client machines.
b. Check network utilization on the WCAT Client Machine(s): If network bandwidth is saturated on the WCAT Client machine(s) then more machines should be added. Add WCAT Client machines until network on the client machines is no longer saturated.
Configuring the WCAT Controller/Network Router

In an isolated network test environment, the WCAT Controller will also be configured as a DHCP server, a DNS server and a router/gateway. This section describes how to setup DHCP, DNS and Routing and Remote Access (RRAS) on a machine running Windows Server 2003 Standard. It should be possible to use a network switch that comes with these capabilities; however this is out of the scope of this document.

	Network Diagram Details

	
[image: image9.emf]Public Network

WCAT Controller Public NIC

Name = public

IP = assigned by public DHCP

Subnet Mask = assigned by DHCP

WCAT Controller Private NIC 1

Name = 10.0.0.X

Static IP = 10.0.0.1

Subnet Mask = 255.255.255.0

WCAT Controller Private NIC 2

Name = 10.0.1.X

Static IP = 10.0.1.1

Subnet Mask = 255.255.255.0

10.0.0.X subnet

10.0.1.X subnet

Web Server NIC 1

Name = 10.0.0.X

IP = assigned by WCAT Controller

on the 10.0.0.X subnet..

Web Server NIC 2

Name = 10.0.1.X

IP = assigned by WCAT Controller

on the 10.0.1.X subnet...

Public NetworkPrivate Network

WCAT

Controller/

Network

Router

Web

Server

Figure 4. Network adapter configuration details for creating a private network test environment

1. WCAT Controller hardware and software requirements

a. 1 network adapter to connect to a public network.

b. N network adapters, 1 for each private subnet to be created.

c. Windows Server 2003 Standard Edition Service Pack 1 or better.

d. Minimum 1.0 Ghz CPU with 256 MB RAM.

2. Naming computers on the private network
a. For all machines on the private network (including the Controller, Clients, Web Server and Database Server) add a default DNS suffix to every computer’s name by right clicking “My Computer” and selecting “properties”. Navigate to the “Computer Name” tab. Click “Change”. Click “More”. Enter wcat.local in the field labeled “Primary DNS suffix of this computer”. Reboot the machine.
3. Set the Administrator password for all computers on the private network

a. Enable the administrator account on all machines on the private network and set the same password on all of them. Log into the WCAT Controller as administrator.

4. Configure network adapters on the WCAT Controller
a. The WCAT Controller needs one network adapter to connect to the public network. This is so that all machines on the private network can still access the internet or other network resources external to the private network. The public adapter does not require any changes.
b. Additionally, the WCAT Controller needs one network adapter per private subnet. It is recommended that the number of subnets equals the number of network adapters used on the Web Server. Each Nth subnet will be “10.0.N.0”. Begin with N = 0.
i. Open Control Panel -> Network Connections

ii. For each private adapter, right click the adapter and select “properties”.

1. Navigate to the “General” tab.

2. Select “Internet Protocol (TCP/IP) and click the “properties” button.

3. Enable “Use the following IP address”, and for the first adapter use an IP address of 10.0.0.1 with a subnet mask of 255.255.255.0 and a preferred DNS server of 10.0.0.1. For the second subnet use 10.0.1.1, 255.255.255.0 and 10.0.1.1. For the third use 10.0.2.1, 255.255.255.0, 10.0.2.1, etc…
c. It is recommended that each private adapter be labeled “10.0.0.X”, “10.0.1.X”, etc… according to its subnet and the public adapter be renamed “Public”
5. Install DNS and DHCP

a. Open Control Panel -> Add or Remove Programs -> Add/Remove Windows Components
b. Select Networking Services -> Domain Name System (DNS)

c. Select Networking Services -> Dynamic Host Configuration Protocol (DHCP)

d. Click through the wizard to install the components.

6. Configure DHCP

a. Open Start -> Control Panel -> Administrative Tools -> DHCP

b. Create a new “Scope” for each private network by right-clicking the computer icon and selecting “New Scope…”. This section gives instructions for setting up the first scope assuming a 10.0.0.0 subnet with a subnet mask of 255.255.255.0. The second subnet will be 10.0.1.0, the third will be 10.0.2.0, etc… Substitute the correct subnet prefix for each subsequent subnet.
i. Scope Name: name = “10.0.0.X” for the first subnet, “10.0.1.X” for the second, etc…

ii. Ip Address Range: start ip address = 10.0.0.2, end ip address = 10.0.0.254, length = 24, subnet mask = 255.255.255.0

iii. Add Exclusions: leave default of no exclusions, click next.

iv. Lease Duration: leave default of 8 days, click next.

v. Configure DHCP Options: select “yes, I want to configure these options now”, click next.

vi. Router (Default Gateway): Add 10.0.0.1 to the list of router IP addresses. Click next.
vii. Domain Name and DNS Servers: Parent domain = wcat.local, add 10.0.0.1 to the list of DNS servers. Click next.

viii. WINS Servers: Leave the default of an empty list. Click next.

ix. Activate Scope: Select “Yes, I want to activate this scope now”. Click next.

x. Complete the New Scope Wizard: Click finish to create the scope.
7. Configure DNS

a. Open the DNS Management Console: Open Start -> Control Panel -> Administrative Tools -> DNS

b. Remove the public network adapter from the list of adapters that DNS will use:

i. Right-click the computer icon in the management console, click “properties”.

ii. Navigate to the “Interfaces” tab.

iii. Remove all IP addresses from the list that do not begin with 10.0…

iv. Click OK.

c. Identify and add forwarders:
i. Right-click the computer icon in the management console, click “properties”.

ii. Navigate to the “Forwarders” tab.

iii. Run a command window (winkey-R, cmd.exe). Type ‘ipconfig /all’.

iv. Find the list of “DNS servers” associated with the public adapter. There may only be one or multiple.
v. Add all of the DNS server IP addresses to the list under “Selected domain’s forwarder IP address list”. Keep the same order.

vi. Click OK. Close the command window.

d. Create new “Forward Lookup Zone”: Expand the tree underneath the computer icon, right-click “Forward Lookup Zones”, click “New Zone…”

i. Zone Type: Select “primary zone”, click next.
ii. Zone Name: zone name = wcat.local, click next.
iii. Zone File: Select “Create a new file with this file name” and leave the default value of “wcat.local.dns”. Click next.

iv. Dynamic Update: Select “Allow both nonsecure and secure dynamic updates”. Click next.

v. Completing the New Zone Wizard: Click Finish.

8. Enable and Configure “Routing and Remote Access”
a. Note: This step is not necessary if external network resources or the internet will never be accessed from within the WCAT test environment.
b. Open the Routing and Remote Access Management Console: Open Start -> Control Panel -> Administrative Tools -> Routing and Remote Access

c. Right-click the computer icon, click “Configure and Enable Routing and Remote Access”

i. Configuration: Select “Network address translation (NAT)”. Click next.

ii. NAT Internet Connection: Select “Use this public interface to connect to the Internet”, then highlight the public network adapter in the table. Unselect “Enable security on the selected interface by setting up Basic Firewall”. Click next.

iii. Network Selection: Select the first private network, “10.0.0.X”. Click next.
iv. Completing the Routing and Remote Access Server Setup Wizard: Click Finish.

9. Update DNS suffix search order lists on ALL machines (including Controller, Clients, Web Server and Database Server)
a. Note: This step is only necessary if accessing computers that are part of a Windows domain on the “public” network.
b. Open Control Panel -> Network Connections

c. For any single private adapter, right click the adapter and select “properties”.

d. Navigate to the “General” tab.

e. Select “Internet Protocol (TCP/IP) and click the “properties” button.

f. Navigate to the “General” tab.

g. Click the “advanced” button.
h. Navigate to the DNS tab.

i. Select the “Append these DNS suffixes (in order):” dial.

j. Click the “Add” button, enter wcat.local and click the “Add” button.

k. Click the “Add” button for each public domain and add the domain AFTER wcat.local.
i. Hint: A complicated network like Microsoft’s corporate network might consist of multiple domains. From any domain joined machine, type ‘ipconfig /all’ in a command prompt. Look for all the domains listed under “DNS Suffix Search List” and add them in the same order.

Section 4. Quick Start

This quick start tutorial gives instructions on how to install and run WCAT assuming that one of the three recommended WCAT environments is already fully configured. This also assumes that a settings file and client/scenario file are already implemented and the Web Server already has all appropriate content installed.
Installing WCAT
Prerequisite: all machines that will run WCAT must have the administrator account enabled and must all share a common password.

1. Log into the WCAT Controller as administrator.

2. Install wcat.msi on the machine to be used as a WCAT Controller.
3. If any WCAT extension DLLs will be used, copy them to the WCAT installation directory. (typically c:\Program Files\WCAT)

4. Open a command prompt; navigate to the WCAT installation directory.

5. Run ‘cscript //H:Cscript’
6. Run ‘wcat.wsf –terminate –update –clients {comma separated list of WCAT client machines}’ where the “clients” parameter accepts a comma separated list (no spaces) of the machines you plan on using as WCAT Client machines. Note: If the WCAT Controller machine will also be used as a WCAT Client, include ‘localhost’ OR the name of the WCAT Controller machine in the list of clients. If WCAT has never been installed on the WCAT Client machines before, this will cause the machines to reboot.
Running WCAT
1. Log into the WCAT Controller as administrator.

2. Install wcat.msi on the machine to be used as a WCAT Controller.

3. Open a command prompt, navigate to the WCAT installation directory (typically c:\Program Files\WCAT)

4. Run ‘wcat.wsf –terminate –run –clients {comma separated client list} –t {scenario file} –f {settings file} –s {name of the Web Server} –singleip -x
5. Output will be generated in the current directory, ‘log.xml’. To change this, use the ‘-o’ flag. For more help on options to pass to wcat.wsf type ‘wcctl.exe -?’
Interpreting WCAT Output

1. Copy report.xsl from the WCAT install directory on the WCAT Controller to the same directory as the log.xml output file.
2. Open log.xml in Windows Explorer. It will automatically open in Internet Explorer and display the full report. The data in the “summary” section will be the most interesting data. See the section on “Interpreting WCAT Output” for details on what each field means.
3. OR… from a command prompt, use “wcutil.exe {log.xml}” to display quick summary data. Wcutil.exe accepts wildcard characters and can be used to summarize multiple log.xml files simultaneously.
	WCUtil Usage Screenshot

	C:\Program Files\WCAT>wcutil.exe

Usage: wcutil [-s] [-d] [-x] [filename(*)]

 -s(imple) Do not display CSV headers or average.

 -x(ml) Xml output.

 -d(rophighlow) Drop highest and lowest path runs.

Column details:

 file - output filename

 tps - transactions per second

 kcpt - kilocycles per transaction (aka 'path')

 bpt - bytes per transaction

 cpu - percent CPU utilization

 err - true if any errors were reported

WCUtil Usage

	WCUtil Usage Screenshot

	C:\Program Files\WCAT>wcutil.exe log*xml

file , tps, kcpt, bpt, cpu, err

--

log.i01.xml , 18978.5, 139.6, 7705, 99.4, false
log.i02.xml , 17772.8, 146.2, 7690, 97.4, false
log.i03.xml , 18790.3, 141.2, 7699, 99.5, false

--

average , 18513.8, 142.3, 7698, 98.8, false

WCUtil example usage
Best Practices

1. Run tests on an isolated network.

2. Check that load generator machines are not CPU, memory or network bound.

3. Always test the web server in a known good state (i.e. record all changes to the web server such as registry changes, installed software, etc…).

4. Run multiple iterations of the test to validate that variance in results is low. If the standard deviation of requests/second between consecutive tests is greater than 2% then increase run time and warm up time.

5. Validate that the warm up period in WCAT tests is sufficient. Web Servers can take multiple minutes to fully populate all relevant caches. Experiment with larger warm up periods until no difference in throughput occurs.

6. Check the results of WCAT to ensure that no unexpected errors occurred. Ideally, the number of errors will be zero, or potentially only a fraction of 1%.

Section 5. Running WCAT

A default WCAT installation includes a simple script file, wcat.wsf. This script provides utility functionality for installing the WCAT Client software on remote machines, terminating rogue remote processes, starting remote WCAT Client processes and launching the WCAT Controller software.
Prerequisites for WCAT

The WCAT controller and client machines should be Windows XP or Windows Server 2003 or newer Microsoft operating systems. If a test environment is a mixed 32/64 bit environment (i.e. some machines are 32 bit only hardware and some are running x64 based processors and operating systems) then x86/32 bit WCAT software should be used. If all WCAT client and controller machines are running a 64 bit operating system then a 64 bit version of WCAT can be used. As a rule-of-thumb, 1MB of RAM should be available per virtual user.

WCAT Client requires a few TCP related registry keys be set. The following keys must be set for WCCLIENT.EXE to work properly (these are configured automatically during installation via ‘wcat.wsf’).

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\MaxUserPort = 0xfffe

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay = 0x2
Using wcat.wsf to control WCAT

Wcat.wsf is a utility script for managing a WCAT test environment. It can perform three primary actions, “terminate”, “update” and “run”. It operates on a comma separated list of machines specified with the “-clients” parameter or if none is specified can query a registry key. At least one action must be specified, but multiple actions can be specified. If more than one action is specified, they are executed in the following order:
1. SetClients sets the default list of clients to use for tests.
2. Terminate all instances of WCAT Client on all client machines.

3. Update WCAT Client software and extension DLLs on all client machines. (The first time will force a reboot)
4. Run WCAT Client software on all client machines and then start WCAT Controller software locally.

	Wcat.wsf Usage Screenshot

	Usage: wcat.wsf [-clients {c1,c2,...}] [-terminate] [-update] [-run]

 [-setclients] [-showclients]

 [-stdout {logfile}] [-stderr {logfile}] [-help]

 [-{wcctl parameters}]

 ACTIONS:

 -terminate For all clients in the 'clients' option, terminate all

 instances of the wcclient.exe process

 -update Copies wcclient.exe and all dlls from the the directory in

 which wcat.wsf resides to \\client\admin$\wcat

 -run Starts wcclient on all remote clients and then launches

 wcctl on the local machine with all pass-through options

 -setclients Sets the default value for the 'clients' parameter in the

 registry key value 'HKLM\Software\WCAT\Clients'. If

 no '-clients' parameter is used this list will be the

 default set of clients used for all tests.

 -showclients Shows the list of clients to be used by wcat.wsf.

 OPTIONS:

 -clients Comma separated list with no spaces of client machine names.

 If not specified, wcat.wsf will first look in the registry

 key path 'HKLM\Software\WCAT' for a value named 'Clients'

 of type REG_SZ. If not found, it will default to 'localhost'

 -stdout Optional log file to write wcctl.exe standard output to

 -stderr Optional log file to write wcctl.exe standard error to

 -help Displays this help screen (-? and -h also work)

 WCClient OPTIONS:

 -{wcctl_opts} Type 'wcctl' in the command window for details on what

 options to pass to wcctl. All unrecognized options passed

 to wcat.wsf will be passed through to wcclient.exe

The terminate function is useful for stopping remote WCAT Client process instances after error situations that may leave such processes running. It is recommended that this flag is always passed to wcat.wsf for all operations.
The update function will copy wcclient.exe and all DLLs from the WCAT install directory (not recursively) to each target client under the windows directory via the \\computername\admin$ share. It will create a new “WCAT” directory underneath the windows system directory on each client. If the registry parameters, “MaxUserPort” and “TcpTimedWaitDelay” are not properly configured, the update function will set them to “0xfffe” and “0x2” respectively and reboot the target machine. Use the update function to update WCAT binaries to a new version, install WCAT client software onto target machines initially or to install/update any WCAT extension DLLs.
The run function will first launch wcclient.exe on each specified remote machine. After this has been successfully accomplished, wcctl.exe will be called. Wcat.wsf will count the number of clients specified and will automatically pass the correct “-c” parameter to wcctl.exe. All parameters not recognized by wcat.wsf will be passed through to wcctl.exe without modification.

WCAT.WSF supports a default list of clients that is stored in a registry key on the WCAT Controller machine. The registry key can be set with the setclients command. To view the default list, use the showclients parameter.

Wcctl.exe command line options

The WCAT Controller software is contained in a single binary, wcctl.exe. The function of wcctl.exe is to coordinate the beginning and end of the test between all the client machines. It also aggregates the data gathered from all clients into a single report and queries the Web Server directly for performance counter data.
	Wcctl.exe Usage Screenshot

	C:\Program Files\WCAT> wcctl.exe
wcctl 6.3.1 - Web Capacity Analysis Tool Controller.

Copyright (c) 1995-2005 Microsoft Corporation. All rights reserved.

Usage: wcctl.exe [options]

 Parameters may be specified with either their shortname or longname.

 For example: -(p)arameter has a shortname of -p and a longname of -parameter

 Input file parameters (Reads info from these files)

 -clien(t)file file Scenario file sent to client.

 -settings(f)ile file Settings file used by controller.

 Test settings file override parameters

 -(v)irtualclients number Number of virtual clients to use.

 -(s)erver string Comma delimited list of remote servers

 to make requests to.

 -(p)ort number Remote server port to make initial check to.

 -(c)lients number Number of expected client connections.

 -k -comment string Insert specified comment into output log.

 Client/script file override parameters

 -(w)armup number Warmup period in seconds.

 -d(u)ration number Duration period in seconds.

 -cooldow(n) number Cooldown period in seconds.

 Output file parameters, controls how information is output.

 -(o)utput file File to output statistics to.

 -(r)eport file XSLT file to apply to XML.

 Additional parameters

 -(d)ebug string Comma delimited list of debug flags:

 DEBUG_BREAK_ON_BAD_STATUS

 DEBUG_BREAK_ON_CONNECT_FAILURE

 -e(x)tended Output extended information (windows only).

 -(l)egacy Legacy transaction counting (default)

 counts only transactions that execute

 an HTTP request.

 -(i)pv6 Enables ipv6 support for WebCAT

 -sin(g)leip Only make requests to the server over the

 first ip address that resolves instead of

 round-robin through all ip addresses.

Input File Parameters
The following parameters instruct WCAT which files to use that describe the test to be run. Generally, there are two files, the scenario file and the settings file. The scenario file describes the mix of URLs to request, how often to request them, what extension DLLs to load, etc. The settings file contains data that may vary between different test environments running the same scenario. For example, the Web Server name, the number of physical clients, performance counters for specific machines, etc.
	Option
	Default
	Description

	-clientfile, -t
	none
	[REQUIRED] The Scenario file to use for the test to be run. The scenario file is the text file that contains the scenario{ … } element.

	-settingsfile, -f
	none
	[REQUIRED] The settings file to use. This file is a text file that contains the settings{ … } element.

Settings File Override Parameters

Test parameters override parameters specified in the settings file. The settings file contains parameters that are specific to a test environment and not a particular scenario.
	Option
	Default
	Description

	-virtualclients, -v
	none
	[REQUIRED if not specified in Settings file] The number of virtual clients to simulate from each physical client. For example, if 8 physical client machines are used, and this value is specified as 4, then a total of 32 connections will be simulated.

	-server, -s
	none
	[REQUIRED if not specified in Settings file] A comma separated list of Web Servers or IP addresses to generate load against. The list must contain no spaces. (example: “web1,web2,web3” is OK, “web1, web2, web3” is NOT OK)

	-port, -p
	80
	Before the test begins WCAT will make a simple connectivity check. It does this by attempting to connect to the first Web Server’s HTTP port. If the target Web Server is not listening on port 80 then this value will need to be changed.

	-comment, -k
	none
	Optionally, a comment can be included in the results of the test. This can be anything as long as it is surrounded by quotes. (example: “test run after improving FOO datastructure”)

Scenario File Override Parameters

Scenario file override parameters override parameters specified in the scenario file. The scenario file contains the scenarios, transactions and requests that define the blend of HTTP requests that WCAT will execute.

	Option
	Default
	Description

	-warmup, -w
	none
	[REQUIRED if not specified in Scenario file] The warmup period, in seconds. WCAT uses a “warmup” period in order to allow the Web Server to achieve steady state before taking measurements of throughput, response time and performance counters. WCAT will divide the warmup phase into two parts. For the first half of the warmup period WCAT will slowly add virtual clients until all virtual clients have been activated. The second half is pure load generation.

	-duration, -u
	none
	[REQUIRED if not specified in Scenario file] This is the duration in seconds that WCAT should run AFTER the warmup phase. The duration phase is when WCAT samples data.

	-cooldown, -n
	none
	[REQUIRED if not specified in Scenario file] In order to ensure that measurements end before load generation ends a cool down period in seconds must be specified. Recommended time is 20 seconds.

Output File Parameters

The output file parameters control where WCAT creates the output file, what it is named and optionally whether to link to a URL containing report.xsl, the XSL file used to view WCAT XML output files.

	Option
	Default
	Description

	-output, -o
	log.xml
	File name to output XML final report to.

	-report, -r
	report.xsl
	Optionally, if report.xsl is located on a network resource or a well known path then all log.xml files generated can hard-link to report.xsl. If this is not specified then report.xsl must be in the same directory as a log.xml file being viewed. (example: c:\wcat\report.xsl)

Miscellaneous Parameters

	Option
	Default
	Description

	-extended, -x
	na
	Specify this flag to enable extended information collection. This includes performance counters, registry value collection and other miscellaneous Server information such as number of processors, CPU speed, total memory, etc.

	-legacy, -l
	na
	Internal use only. Do not use.

	-debug, -d
	na
	Internal use only. Do not use.

	-ipv6, -i
	na
	Specify this flag to tell WCAT to make requests to the Web Server over ipv6 instead of ipv4.

	-singleip, -g
	na
	Specify this flag to instruct all WCAT Client software to make requests to the Web Server on only the first IP that resolves instead of round-robin to all IP addresses that resolve for the Web Server. Use this flag in any test environment with multiple subnets.

Section 6. WCAT Fundamentals 101

This section describes some of the fundamental concepts that WCAT uses. This includes how WCAT simulates unique users, how individual HTTP requests are played back to the web server and how WCAT handles cookies.

WCAT Clients and Virtual Clients

In a “real world” web server, HTTP requests are generated from potentially thousands of unique physical machines. WCAT is designed to simulate multiple unique users concurrently making requests to a web server. WCAT uses the notion of a “physical client” and a “virtual client”. A physical client is a real computer running one instance of the WCAT Client process. Each process can simulate thousands of users. These users are called “virtual clients”. When WCAT is executed, it accepts a parameter “-virtualclients”, which specifies the number of concurrent users to simulate from each physical client. For example, if a test environment has 10 physical clients and the test specifies 8 virtual clients per physical client, then the web server will receive 80 concurrent connections.

The Scenario File and the Client File

WCAT uses two primary configuration files to describe how to generate load. The first file is the scenario file. The scenario file is primarily utilized by the WCAT Client process and is sometimes referred to as the “client file”. It describes the mix of URLs to request, how often to request them, what extension DLLs to load, etc. The second file is the settings file which describes configuration specific to a particular test environment. Environment specific settings can be placed in the settings file such as number of machines, number of virtual clients, the name of the Web Server, etc. The Settings file is also referred to as the Controller file because it is used primarily by the WCAT Controller.
Scenarios, Transactions, Requests and Weights

WCAT makes HTTP requests to a web server based on individual requests defined in the Scenario file. The scenario file contains one or more transactions and each transaction contains requests. Each scenario also contains a “weight”. The weight is an integer value which defines the probability that an individual transaction will be executed by a virtual client. Example 1 below shows a very simple WCAT scenario file containing two transactions. One has an ID of “foo” and the other “bar”. The weight of “foo” is 1000 while that of “bar” is 2000. When deciding what transaction to execute next, a virtual client will randomly choose “bar” twice as often as “foo” because it is weighted twice as heavily.

	Example WCAT Scenario File

	scenario

{

 transaction

 {

 id = "foo";

 weight = 1000;

 request

 {

 url = "/foo1.htm";

 }
 request

 {

 url = "/foo2.htm";

 }

 }

 transaction

 {

 id = "bar";

 weight = 2000;

 request

 {

 url = "/bar.htm";

 }
 }
}

Example 2. Simple example scenario file.

Once a virtual client has chosen a transaction to execute, it will iterate through the list of requests sequentially until it has reached the end of the transaction. Each virtual client will wait to make a subsequent request until the previous HTTP request has fully completed. Each virtual client in WCAT will execute transactions and requests independently just as if they were separate physical users making requests. Once all the requests in a transaction have completed, a virtual client will then randomly choose a new transaction to execute.

Cookies in WCAT

Each virtual client in WCAT keeps its own list of valid cookies. Whenever a response comes back from the server with a Set-Cookie header, WCAT stores that cookie in a virtual client specific context. Whenever a request is sent that matches the domain and path for a cookie the virtual client will automatically add the cookie header. To simulate new user sessions, cookies can be explicitly cleared as part of a transaction. WCAT supports disabling cookies for a particular request which means that it will not send the cookies header and it will ignore any received Set-Cookies headers in the response.

Large POSTs in WCAT

WCAT can support sending large post data in one of two ways. The first method is to assign the “postdata” attribute within a single request to the contents of a file. The syntax for this is the file name wrapped in greater-than/less-than brackets. The filename should be relative to each WCAT Client, NOT the WCAT controller. It may be best to copy any files into \\computername\admin$\wcat so that they can be referenced simply. WCAT only supports including text files with this method. The other possibility is to implement an extension function with a WCAT extension DLL that loads or generates content.
Controlling Connections in WCAT

Connections are always established from the web client software. After this, the connection may be closed by either the web server or the web client software. WCAT provides support for simulating connection behaviors.

The web server will close connections if it is instructed to by the “Connection” HTTP header OR if the connection is inactive for some period of time, usually two minutes. The “Connection” header can be set to three values. Use the “setheader” element to set the Connection header. The behavior of the web server will differ depending on the HTTP protocol version being used.

	Request Header
	protocol = HTTP 1.0
	protocol = HTTP 1.1

	Connection: Keep-Alive
	Leave connection open
	Leave connection open

	Connection: Close
	Close connection after response
	Close connection after response

	No Connection Header
	Close connection after response
	Leave connection open

Server behavior depending on protocol version and Connection header sent

If the “Connection: Close” header was sent with the initial HTTP request the web server will close the connection after it is done sending the response. It will leave the connection open if the “Connection: Keep-Alive” header is sent. If no “Connection” header is sent with the HTTP request then the protocols (HTTP 1.0 or HTTP 1.1) have different defaults. In HTTP 1.0, the web server will assume “Connection: Close” and in HTTP 1.1 the web server will assume “Connection: Keep-Alive”.

WCAT supports explicit connection closes in order to simulate real-world connection concurrency. Client side closes can be initiated with two mechanisms. The first is the “close” element, described later in this document. It is part of a transaction and simply closes the connection. The second is through the “close” attribute of the “request” element. It controls WCAT’s behavior after a response has been received. WCAT may still close the connection even if the “close” attribute is set to “ka” (ka == keep-alive) if the web server returns a “Connection: Close” header with the HTTP response.

	Response Header
	close=ka
	close=graceful or reset

	Connection: Keep-Alive
	Leave connection open
	Close connection after response

	Connection: Close
	Close connection (reset) after response
	Close connection after response

	No Connection Header
	Leave connection open
	Close connection after response

WCAT behavior depending on “request/close” attribute and Connection header
The “close” attribute can be set to “ka” (keep-alive), “graceful” or “reset”. Both “graceful” and “reset” close the connection. The difference is that “graceful” closes the connection after a few seconds, allowing all pending sends/receives to complete. “Reset” closes forcefully close the connection and all pending data is cancelled.

Modern browsers use the HTTP 1.1 protocol. This means that after being established, connections will stay open for several minutes. A user will typically make an initial request to a main page (usually the root of the web server). This will cause a connection to become established. The web browser software will receive the contents of the main page and will parse it and usually find picture files or java or flash files that it needs to download. The web browser will then automatically and very quickly make several subsequent requests in order to fully render the web page. A few seconds to minutes later, the user will likely follow a link from the main page to another one the same website. This request will happen on the same connection. If the user leaves the website the browser may close the connection immediately using the graceful method. If the user is inactive for two minutes the web server will close the connection.

HTTPS in WCAT

WCAT supports multiple protocols for secure connections. The most common secure communication protocol is SSL3. When the “secure” attribute is set within a request element, WCAT will automatically establish a secure connection with the web server if no connection is currently established. There are two methods for creating a secure channel in HTTPS; a “full handshake” and a “reconnect handshake”. The former is very expensive and typically occurs the first time a client connects to a web server. Subsequent connections can use a cheaper reconnect handshake. By default, WCAT will use a full handshake on the first connection and all subsequent connections from a virtual client will perform a reconnect. A handshake can be forced by adding the “handshake” attribute to the request.

Redirections in WCAT

WCAT supports redirections to different URLs. There are two status codes that indicates to a web browser that a resource has moved to another URL and that the browser should re-request that new URL. These are “301 Moved Permanently” and “302 Found”. If the “redir” attribute is set to “true” then WCAT will automatically request the new URL. When requesting the new URL, WCAT will create a temporary request derived from the current request. All attributes including the request verb and post data will be identical except for the url and expected status code. WCAT will expect a “200 OK” response from the new request.

It is possible to override the redirected requests verb in the case that the initial verb is a POST and the web server expects a subsequent GET request. Use the redirverb attribute in the request element to do this.

Authentication in WCAT

WCAT supports two types of authentication to a web server. The first is “basic” authentication which essentially sends the user name and password in plaintext across the network. The second is “ntlm” authentication which is a more secure protocol used by Windows that consists of a negotiation, a challenge and a response. Authentication is per connection; once a web client authenticates to a web server on a connection the web server will mark that connection as authenticated. Subsequent requests on the same connection will not require re-authentication.

The diagram below shows the HTTP traffic for basic authentication. The initial request for a URL is issued by the client, and the server responds with a “401 Unauthorized” response that contains “WWW-Authenticate” headers that specify acceptable authentication protocols. In this case, the method is “basic”. Typically, this is when a web browser pops up a dialog prompting the user to enter a user name and password. The user name and password are base 64 encoded and sent along in with the request. If the server finds that the user has access to the particular resource then the full data is returned and the connection is marked as authenticated for the user.
	HTTP Traffic Diagram

	
[image: image10.emf]GET /url.htm HTTP/1.1

WWW-Authenticate: “Basic” {b64 user/pass}

HTTP/1.1 200 OK

Content-Length: 9

Data...

HTTP/1.1 401 Unauthorized

WWW-Authenticate: “Basic” realm=”foo”

Content-Length: 0

GET /url.htm HTTP/1.1

WCAT

 Client

Web

Server

Request

“A”

Request

“B”

Example HTTP traffic for an authenticated resource using “basic” authentication

To simulate requests to a URL that requires basic authentication with WCAT, two requests should be used. The first should be for the base URL and should expect a “401” status code. This is represented in the above diagram as “Request A”. A second request should be made with authentication set to “basic” and with a user name and password. WCAT will automatically generate the correct WWW-Authenticate header and send it with the request. Request “B” should expect a 200 OK response from the server.
	HTTP Traffic Diagram

	
[image: image11.emf]GET /url.htm HTTP/1.1

WWW-Authenticate: “NTLM” {negotiate}

HTTP/1.1 401 Unauthorized

WWW-Authenticate: “NTLM” {challenge}

Content-Length: 0

HTTP/1.1 401 Unauthorized

WWW-Authenticate: “NTLM” realm=”foo”

Content-Length: 0

GET /url.htm HTTP/1.1

WWW-Authenticate: “NTLM” {response}

HTTP/1.1 200 OK

Content-Length: 9

Data...

GET /url.htm HTTP/1.1

WCAT

 Client

Web

Server

Request

“A”

Request

“B”

Example HTTP traffic for an authenticated resource using “NTLM” authentication

Simulating NTLM traffic with WCAT is very similar to Basic authentication even though more actual HTTP requests will occur while authenticating. This is because WCAT will make multiple HTTP requests on behalf of the virtual client as part of the second request with authentication set to “NTLM”. The example below contains sample transactions performing both basic and ntlm authentication.

	scenario

{

 …
 transaction

 {

 id = "basic authentication";

 request

 {

 url = "/basic.htm";
 statuscode = 401;
 }
 request

 {

 url = "/basic.htm";
 authentication = “basic”;

 username = “user”;

 password = “pass”;

 statuscode = 200;
 }
 }

 transaction

 {

 id = "ntlm authentication";

 request

 {

 url = "/ntlm.htm";
 statuscode = 401;
 }
 request

 {

 url = "/ntlm.htm";
 authentication = “ntlm”;

 username = “user”;

 password = “pass”;

 statuscode = 200;
 }
 }

}

 Example transactions with authentication.

Performance Counters in WCAT

Windows performance counters are organized into groups of counters. Some groups are global, and some groups can have one or more instances that are tracked independently. The syntax for referring to a performance counter is shown below.

	Performance counter from a global group:
	‘Group\Counter Name’

	Performance counter from a group with instances:
	‘Group(instance)\Counter Name’

Take for example, the “Memory” group. It is global and has no specific instances. To refer to the “Committed Bytes” counter in the “Memory” group use the string, ‘Memory\Committed Bytes”. There is one instance per physical network adapter for the performance counters in the group, “Network Interface”. Each adapter in the system has a separate name such as “Intel[R] PRO_1000 MT Desktop Adapter”. To monitor network utilization on a particular adapter the adapter’s name first needs to be identified. To discover what instances exist for a given counter, use the perfmon.msc, select “add counter” and then browse the counter instances in the dialog. The counter for bytes total per second would be ‘Network Interface(Intel[R] PRO_1000 MT Desktop Adapter\Bytes Total/sec’ in this example.

	Processor(_Total)\% Processor Time
	This counter will report the total CPU utilization of the system. If this counter is at or close to 100% then CPU is saturated.

	Process(w3wp)\Private Bytes
	This is the number of bytes that are private to the IIS 6 or 7 worker process. This includes memory allocated as part of the workload as well as private bytes resulting from static data in DLLs and relocated pages. For older versions of IIS, a different process name should be substituted.

	Process(w3wp)\Virtual Bytes
	This is the virtual address space utilization of the IIS 6 or 7 worker process. On 32 bit machines or with 32 bit worker processes, this space is effectively exhausted at around 1.5 GB. (Theoretically, the user mode address space is 2.0 GB however fragmentation of the address space will limit the usable amount.) On 64 bit machines this space is much larger.

	Memory\Committed Bytes
	Total page file use on the target machine.

	Network Interface(interface instance)\Total Bytes/sec
	Total bytes transferred, including reads and writes on a particular network interface. Most network cards are rated in “bits” per second, not bytes per second. To convert a “bits network speed into bytes per second divide by 8. Therefore, a 1Gbps network is capable of transferring approximately 125 megabytes per second. Once a network adapter approaches 80% capacity, it may be saturated.

	Physical Disk(disk instance)\Avg. Disk Queue Length
	Due to the physical nature of hard disks, determining the limits of a drive is tough. Factors such as the number of writes, how far apart they are on the platter and how big they are can affect true maximum throughput for a particular workload. Therefore, the best way to determine if a disk is near capacity is to look at the queue length of pending I/Os. If this counter is greater than 1 queuing is occurring. If the counter grows larger than 10 per physical disk then it is a possible indication that the disk(s) are saturated.

A few very useful performance counters
Section 7. Configuration File Syntax

Overview

The WCAT configuration files follow syntax similar to C/C++ with a structure similar to XML. A configuration file consists of multiple elements that can contain other elements as well as attributes. Order of elements and attributes does matter and is evaluated from top to bottom.

Elements

An element begins with an element name and is followed by an open-curly-brace. The contents of the section follow the open-curly-brace. The element is “closed” by a closing curly brace.

	element

{

}

An empty element

Attributes

An element can contain multiple attributes. Attributes are assigned by name with an equal sign followed by a value and a semicolon. Attributes are typed; the most common type is a string. Other types include integers and keywords. Most attributes have default values and some are required by their parent elements.
	element

{

 attribute = “value”; // example of assigning a string attribute

}

A simple string attribute assignment within an element
	type
	syntax
	description

	string
	attribute = “value”;
	Constant string assignment.

	dynstring
	attribute = <filename>;
	Load filename and assign the text in it to the attribute.

	dynstring
	attribute = function(p1, p2, …);
	Assign attribute to the string value returned by function.

	dynstring
	attribute = “value” + “value”;
	String concatenation.

	keyword
	attribute = keyword;
	Keyword assignment (example: HTTP10, true, false, …)

	integer
	attribute = 0;
	Constant integer assignment.

Attribute assignment syntax
Comments

WCAT configuration scripts accept simple C-style comments. Any instance of ‘//’ outside of a string will cause the rest of the line to be ignored. Slash-star style comments are not supported.
Strings

Most attributes in WCAT are string values. Strings are simple ASCII strings. String literals can be specified by surrounding the string value in double-quotes. Special characters within a quoted string are escaped with a back-slash (\). To disable escape sequences, use single quotes. Any string values can be concatenated with a plus sign. In this case strings are evaluated from left to right.
	escape sequence
	description

	\t
	tab

	\n
	newline

	\r
	carriage return

	\\
	single backslash

	\”
	quote

String literal escape sequences supported by WCAT
Functions

WCAT supports several functions out-of-the-box. This includes a function to generate random numbers, identify the current virtual client and more. Functions always resolve to a string type. Functions can accept parameters, also only in the form of strings. For details on how to write custom functions, see “Section 11. Extending WCAT Functionality”.
	element

{

 attribute = rand(“1”, “100”); // example of calling the rand function

}

Example - assigning an attribute to the return value of a function.

Section 8. Settings File

Overview

The settings file contains configuration specific to a particular test environment such as number of clients, virtual clients, performance counters.

Root Element (settings element)

The settings section is the root element in the settings file. It is required.

	settings

{

 clientfile = string;
 server = string;
 clients = integer;

 virtualclients = integer;

 counters {…}
 registry {…}
}

settings element

	attribute
	type
	required
	description

	clientfile
	string
	optional
	Absolute or relative path of the scenario file to use.

	server
	string
	optional
	Name or IP of the Web Server to test. This can be a comma separated list of multiple Web Servers or IP addresses with no spaces.

	clients
	integer
	optional
	Number of physical clients.

	virtualclients
	integer
	optional
	Number of virtual clients to use per physical client.

settings element attributes
	element
	required
	description

	counters
	optional
	Each counters element contains a list of performance counters to monitor on a remote machine.

	registry
	optional
	List of registry values to query on a remote machine.

settings child elements

counters element

The counters element allows performance counters to be monitored on a target machine. Multiple machines can be monitored by adding more counters elements to the settings element.
	settings
{

 …
 counters
 {

 interval = integer;

 host = string;
 counter = string;
 }

 …

}

counters element

	attribute
	type
	required
	description

	interval
	integer
	yes
	The WCAT Controller will poll all performance counters on the target host every N seconds as specified by this value. Recommended value is 10 seconds.

	host
	string
	optional
	If not specified, the default value is the first target Web Server. Otherwise, this can be any machine name reachable.

	counter
	string
	yes
	At least one performance counter to be monitored. To browse available performance counters, run “perfmon.msc” from a command prompt. Syntax for specifying a counter is:
 ‘object(instance)\countername’ or ‘object\countername’ if the object is global and no instances are available.

counters element attributes

registry element

The registry element allows the values of registry keys on the Web Server to be retrieved and stored in the results of WCAT output XML files. All registry paths are relative to HKLM.
	settings
{

 …

 registry

 {

 path = string;

 name = string;

 type = keyword [REG_DWORD|REG_SZ];
 }

 …

}

registry element

	attribute
	type
	required
	description

	path
	string
	yes
	Path in the registry relative to HKLM.

	name
	string
	yes
	Name of the key to retrieve.

	type
	keyword
	yes
	The type of the registry key being accessed. Currently, WCAT only supports two key types, REG_DWORD and REG_SZ.

registry element attributes

Section 9. Scenario File

The scenario file is primarily utilized by the WCAT Client process and is often referred to as the “client file”. It describes the mix of URLs to request, how often to request them, what extension DLLs to load, etc.

Overview

The scenario file consists of three main pieces. The first is the default request element. This describes attributes to be used as defaults for all requests defined in the scenario file. Examples of typical settings include the default HTTP headers, HTTP version, expected status code and connection close/keep-alive behavior. The second section (which is optional) is the library section. WCAT supports extensibility through native code DLLs. The library section allows the extension DLL to be specified and all exported functions to be declared. The final piece of the scenario file is all of the transactions to be executed by WCAT Client. Transactions have weights and are chosen randomly according to the weight given to them. Typically a transaction consists of a linear list of HTTP requests to execute against the target web server. A transaction can also contain other “actions” such as connection closes, sleeps and branches within the current transaction.

Root Element (scenario element)

The scenario element is the root element of the scenario file. It must be defined in the scenario file and must contain at least one transaction. See the overview section above for more details on the scenario file.
	scenario
{

 name = string;
 warmup = integer;
 duration = integer;
 cooldown = integer;
 throttle = integer
 minbps = integer;
 library {…}
 default {…}

 transaction {…}
}

scenario element

	attribute
	type
	required
	description

	name
	string
	optional
	This populates the “comment” field in the output XML file.

	warmup
	integer
	optional
	Period, in seconds, to execute the warm-up phase.

	duration
	integer
	optional
	Period, in seconds, to execute the test phase after the warm-up phase has completed. The duration is the period of time that WCAT gathers all data including throughput, latency and performance counters.

	cooldown
	integer
	optional
	Period, in seconds, to execute the cool-down phase after the test phase has completed. This is a simple “buffer” period to ensure that all measurements are not taken at the boundry of the test completion. Recommended value is 20 seconds.

	throttle
	integer
	optional
	Maximum bytes per second to receive. WCAT will attempt to throttle overall throughput by adding delays between calls to receive data off the network. Note: This option is currently implemented naively and cannot truly throttle throughput because it cannot affect network layer buffering. It will have the overall effect of slowing down throughput.

	minbps
	integer
	optional
	Minimum bytes per second to receive. If a virtual client falls below the specified bitrate then an error is reported in the WCAT XML output.

scenario element attributes

	element
	required
	description

	library
	optional
	Describes the extension DLL to use, if any, and what exports to use within the scenario file.

	default
	optional
	Defines the default headers, HTTP version and connection behavior for all request elements.

	transaction
	yes
	Defines a single transaction. Multiple transactions may be defined in a scenario element. At least one must be defined.

scenario element child elements

library element

The library element allows a WCAT extension DLL to be loaded and utilized by WCAT Client. Extensibility includes defining custom user functions that resolve to strings, response filter and a global initialize and cleanup methods. Currently, WCAT does not support per virtual client cleanup or initialization routines. WCAT currently only supports loading a single extension DLL.
The library element must come before any references to any functions declared in the library element.

	scenario
{

 …
 library

 {

 dll = string;

 function{…}
 handler{…}

 global{…}

 }

 …

}

library element

	attribute
	type
	required
	description

	dll
	string
	yes
	File name of extension DLL to load.

library element attributes

	element
	required
	description

	function
	optional
	Adds a simple dynamic string function.

	handler
	optional
	Adds a response handler function.

	global
	optional
	Defines what exports to call for global initialization or cleanup.

library element child elements

function element

The function element provides a mechanism for mapping an export from an extension DLL to an alias. The alias is used to call into the DLL from within the scenario script file. Custom user functions return a dynamic string type and can be used to generate fragments of a dynamic string anywhere that the type dynstring is accepted. For more details on extending WCAT, see “Section 11. Extending WCAT Functionality”.
	library

{

 …

 function

 {

 name = string;
 export = string;
 cleanup = string;
 }

 …

}

function element

	attribute
	type
	required
	description

	name
	string
	yes
	Alias of the function as referenced within the scenario file.

	export
	string
	yes
	Name of the function exported from the extension DLL.

	cleanup
	string
	optional
	Export of function to be called to clean up after return value is no longer needed.

function element attributes

handler element

The handler element maps a response filter/handler function from the DLL so that it can be used within WCAT. Requests can specify a response handler that will be invoked whenever the full contents of a request are returned from the web server. For more details on extending WCAT, see “Section 11. Extending WCAT Functionality”.

	library
{

 …

 handler
 {

 name = string;

 export = string;

 }

 …

}

handler element

	attribute
	type
	required
	description

	name
	string
	yes
	Alias of the handler as referenced within the scenario file.

	export
	string
	yes
	Name of the handler exported from the extension DLL.

handler element attributes

global element

The global element specifies what exports in an extension DLL that WCAT Client should call before the test begins and after the test is complete. For more details on extending WCAT, see “Section 11. Extending WCAT Functionality”.

	library
{

 …

 global

 {

 initialize = string;

 cleanup = string;

 }

 …

}

global element

	attribute
	type
	required
	description

	initialize
	string
	optional
	Name of the initialize method export.

	cleanup
	string
	optional
	Name of the cleanup method export.

global element attributes

default element

The default element describes attributes to be used as defaults for all requests defined in the scenario file. Examples of typical settings include the default HTTP headers, HTTP version, expected status code and connection close/keep-alive behavior.
	scenario
{

 …

 default {…}

 …

}

default element

The default element is exactly the same as a request element, except that it is defined only once inside the scenario element. All attributes and headers specified in the default element will be applied to all request elements within the scenario file. Any attribute or header defined in individual request elements will override those set in the default element. For details on attributes and elements that can be defined within the default element, see the documentation on the request element.
transaction elements

A transaction defines a sequence of actions, usually HTTP requests. WCAT is primarily transaction driven; before taking any action a virtual client will randomly select a transaction to execute according to its weight. Once a transaction is selected, the virtual client will sequentially execute the actions in order from first to last. In the case of a branch statement, a virtual client may perform the same action multiple times. The transaction ends once the last action within the transaction completes.
Actions that can be performed within a transaction include making an HTTP request, sleeping for some time period, closing the current connection, control cookies options or branching to some other action within the transaction.

	scenario
{

 …

 transaction

 {
 // attributes
 id = string;

 weight = integer;

 // elements

 request{…}
 branch{…}
 sleep{…}
 cookies{…}
 close{…}
 }
 …

}

transaction element

	attribute
	type
	required
	description

	id
	string
	optional
	String identifier that describes the transaction.

	weight
	integer
	yes
	Integer weight of the transaction. WCAT will randomly select transactions to execute based on the weight. Weight is not a percentage. WCAT calculates the correct percentage dynamically relative to the total weight of all transactions in a scenario.

transaction element attributes

	element
	required
	description

	request
	optional
	An HTTP request.

	branch
	optional
	A branch object capable of redirecting processing flow to any element within the current transaction that contains an id attribute.

	sleep
	optional
	Causes the virtual client to become inactive for a certain period of time.

	cookies
	optional
	Allows control of cookie options.

	close
	optional
	Controls connection state of a virtual client.

element child elements

request element

The request element contains all the information required to generate a full HTTP request. When executed by a virtual client, a request will be made. All request elements inherit all properties from the default element under the scenario element. Any attribute assigned within a request element will override attributes set in the default element.
	transaction
{

 …

 request
 {

 id = string;
 url = dynstring;
 verb = keyword [GET|POST];
 redirverb = keyword [GET|POST];
 statuscode = integer;
 redirect = keyword [true|false];
 cookies = keyword [true|false];
 secure = keyword [true|false];
 handshake = keyword [full|reconnect];
 protocol = keyword [PCT1|SSL2|SSL3|TLS1];
 algorithms = keyword [RSA_RC4_128_SHA];
 version = keyword [HTTP10|HTTP11];
 postdata = dynstring;
 close = keyword [ka|graceful|reset];
 authentication = keyword [BASIC|NTLM];
 username = dynstring;
 password = dynstring;
 server = dynstring;
 port = integer;
 handler = function;
 setheader {…}
 addheader {…}
 }

 …

}

request element

	attribute
	type
	required
	description

	id
	string
	optional
	Id of the request. Used to refer to requests within a branch statement. Must be unique within the scope of the current transaction.

	version
	keyword [HTTP10, HTTP11]
	optional
	Default value is HTTP10. Typical modern browsers are HTTP11.

	server
	dynstring
	optional
	Optionally, an HTTP request can be sent to an alternate server(s). It will still be counted towards the final tally of requests. Default value is the primary web server list. To specify one or more web servers to make a special request to, this can be a comma separated list without spaces of host names.

	port
	integer
	optional
	Default is port 80 for non-secure requests and 443 for secure requests.

	url
	dynstring
	yes
	Url to request. Must be a valid URI relative to the root of the Web Server. For example, “/”, “/default.htm” and “/foo/bar.htm” are valid URLs. “”, “default.htm” and “foo/bar.htm” are not.

	verb
	keyword

[GET, POST]
	yes
	Two HTTP verbs are currently supported by WCAT, GET and POST. For POST requests, the postdata attribute is required. Default value is GET.

	postdata
	dynstring
	optional
	If the request verb for the current request is set to “POST”, then post data will be sent with the request. If postdata is specified and the current verb is GET, the post data will not be sent.

	statuscode
	integer
	optional
	Specify the expected status code resulting from the current request object. If the return code does not match this value it will be counted as an “unexpected status code” error and the number of errors in the test will be incremented. Set this value to 0 to force WCAT to ignore status codes. Default value is 200.

	redirect
	keyword

[true, false]

	optional
	WCAT can optionally follow redirect responses. Setting this value to true will cause WCAT to make a subsequent request for a redirected URL. Setting it to false will cause WCAT to ignore redirect responses. The subsequent request will inherit all attributes from the current request except the URL will change to the redirected URL and the expected status code will be changed to 200. If redirverb is specified, a different verb will be used by instead of the current request object’s verb. Default value is false.

	redirverb
	keyword

[GET, POST]
	optional
	In the case of a redirect response from the Web Server, WCAT can follow the redirect in a subsequent request. This attribute forces a particular verb to be used on subsequent redirect requests. The default behavior is to use the same verb to request a redirected URL.

	cookies
	keyword

[true, false]
	optional
	Enables or disables cookies support for the current request. WCAT automatically persists cookies sent back from the web server and generates the correct cookies header on subsequent requests. Cookies are stored per virtual client. To disable cookies, set this attribute to false. Default is true.

	secure
	keyword

[true, false]
	optional
	Instructs WCAT to make a secure (SSL) request, typically to port 443. If a connection does not exist WCAT will establish a connection based on the handshake, protocol, and algorithms attributes in the current request. Note that secure requests return encrypted responses which WCAT is not capable of decrypting. Default is false.

	handshake
	keyword

[full, reconnect]
	optional
	This attribute controls how an SSL connection is established. A full handshake is expensive and typically happens the first time that a web browser connects to a web server. A reconnect handshake is faster but will only happen if the web browser and web server have established a full handshake recently. Default is full.

	protocol
	keyword [PCT1, SSL2, SSL3, TLS1]
	optional
	Which SSL protocol to use. The default value is SSL3.

	algorithms
	keyword [RSA_RC4_128_SHA]
	optional
	Default value is RSA_RC4_128_SHA.

	close
	keyword [ka, graceful, reset]
	optional
	Control what to do with the connection for this request after it has completed. For details on controlling the lifetime of a connection see the section

	authentication
	keyword [BASIC, NTLM]
	optional
	Specify that authentication should be used in the current request. Two methods are supported by WCAT, basic plain-text and NTLM.

	username
	dynstring
	optional
	Required if “authentication” attribute is set. Username to authenticate as.

	password
	dynstring
	optional
	Required if “authentication” attribute is set. Password to use when authenticating.

	handler
	function
	optional
	If a response parser is implemented in the extension DLL, it can be invoked by assigning it as the handler for a request.

request element attributes

	element
	required
	description

	setheader
	optional
	Overwrites or adds an HTTP header. If the header value already exists, the value is overwritten. If it does not exist then it is added to the end of the headers list.

	addheader
	optional
	Adds an HTTP header to the headers list for the current request. Whether or not a header of the same name already exists, another header will be created and added to the end of the list.

request element child elements

setheader and addheader elements
The setheader and addheader elements are used to modify or append headers to the list of headers that will be sent with the current HTTP request. Headers are added sequentially. Use “setheader” to modify an existing header’s value. Use “addheader” to create a new header and add it to the end of the list.
	request
{

 …

 setheader
 {

 name = dynstring;

 value = dynstring;
 }

 addheader

 {

 name = dynstring;

 value = dynstring;
 }

 …

}

setheader and addheader elements
	attribute
	type
	required
	description

	name
	dynstring
	yes
	Name of the header. For example, the name of the header “Host: MyWebServer” would be “Host”.

	value
	dynstring
	yes
	Value of the header, not including the colon. For example, the value of the header, “Host: MyWebServer” would be “MyWebServer”.

setheader and addheader element attributes

branch element

Branches allow limited control over the order that requests are executed within transactions. Normally, a transaction consists of a simple linear list of requests. The branch mechanism allows control flow to change based on a simple weight mechanism. Each “goto” element in the branch element must have a target id and a weight. When a WCAT virtual client encounters a branch statement, it will randomly pick one of the goto elements based on their weights. The virtual client will then jump to the element within the current transaction that has an ID that matches that of the goto element. Valid jump targets include any immediate child of the current transaction that contains an “id” attribute. There is no infinite loop detection in WCAT.
	transaction
{

 …

 branch
 {

 id = string;
 goto {…}

 }

 …

}

branch element

	attribute
	type
	required
	description

	id
	string
	optional
	The branch can have an ID assigned to it so that other goto elements can refer to the current branch.

branch element attributes

	element
	required
	description

	goto
	at least 1
	The branch element must have 1 or more goto elements. Goto elements describe the a weight and a target to jump to.

branch element child elements

goto element

The goto element is a child of the branch element. It describes a weight and a target ID to jump to.

	branch

{

 …

 goto

 {

 id = string;

 weight = integer;

 }
 …

}

goto element

	attribute
	type
	required
	description

	id
	string
	yes
	Target ID within the current transaction to jump to. Valid targets are any immediate child element of the current transaction that has a valid “id” attribute.

	weight
	integer
	yes
	Weight to give the current branch.

goto element attributes

close element

The close element allows the current connection, if any, to be closed. Sometimes a virtual client will have multiple concurrent connections open to a web server. For example, when a mix of non-secure and secure traffic is part of a scenario WCAT virtual clients will maintain two connections. One will usually be to port 80 and the other to port 443. In this case, the close element will close the most recently created connection.
	transaction
{

 …

 close
 {

 id = string;
 close = keyword [graceful|reset];
 }

 …

}

close element

	attribute
	type
	required
	description

	id
	string
	optional
	ID of the close element within the current transaction.

	close
	keyword [graceful, reset]
	yes
	Method to use when closing the connection. “graceful” will delay the connection close for a few moments and will attempt to allow all pending sends and receives to complete. This is typical of a web browser. “reset” will forcefully close the connection and all pending data on the connection will be lost.

close element attributes

sleep element

Real web traffic from individual users is bursty. A request for some web page will be received by the web server closely followed by a small burst of requests for resources linked by the first page. After this some delay of multiple seconds, up to minutes will occur while the human user peruses the web site contents. To simulate these pauses, WCAT supports a sleep action which will cause the virtual client to “sleep” for the specified number of milliseconds.
	transaction
{

 …

 sleep
 {

 id = string;
 delay = integer;
 }

 …

}

sleep element

	attribute
	type
	required
	description

	delay
	integer
	yes
	Number of milliseconds to sleep.

	id
	string
	optional
	Id of the sleep element.

sleep element attributes

cookies element

When simulating a new web client requesting data from a web server for the first time, it is often desirable to clear the WCAT cookies cache for the current virtual client before making the request. The cookies element instructs the current virtual client to clear its cookies cache.
	transaction
{

 …

 cookies
 {

 id = string;
 clear = keyword [true];
 }

 …

}

cookies element

	attribute
	type
	required
	description

	id
	string
	optional
	Id of the cookies element.

	clear
	keyword [true]
	yes
	This must be set to “true”.

cookies element attributes
Section 10. WCAT Internal Functions

Overview

WCAT supports several useful functions that accept dynstring parameters and return a dynstring. All parameters to internal functions are dynstrings and all return values are dynstrings. Therefore, these functions can only be included in attribute assignments for attributes with the type “dynstring”.
rand(x, y)

	Description
	
	Computes a random number between x and y, inclusive. For example, calling rand(“1”, “3”) may return a “1”, “2” or “3”.

	Parameters
	x
	Minimum value, must convert to a decimal number.

	
	y
	Maximum value, mist convert to a decimal number.

	Return Value
	
	Returns a string representation of a random number.

server ()

	Description
	
	Returns a comma separated list of host names that the current test is executing against.

	Parameters
	
	none

	Return Value
	
	Comma separated list of host names.

clientname()

	Description
	
	Returns the host name of the current WCAT Client machine.

	Parameters
	
	none

	Return Value
	
	Host name of the current WCAT Client machine.

clientcount()
	Description
	
	Returns the total number of WCAT Clients in the current test run.

	Parameters
	
	none

	Return Value
	
	Total number of WCAT Clients in the current test run.

vclientcount()
	Description
	
	Computes the number of virtual clients per WCAT Client for the current test run. To compute the total number of virtual clients, use “multiply(vclientcount(), clientcount())”.

	Parameters
	
	none

	Return Value
	
	Number of virtual clients per WCAT Client for the current test.

clientindex()

	Description
	
	For any given test, each WCAT Client will be assigned an index between 0 and clientcount()-1, inclusive. This index may change between test runs, but will remain constant for the duration of a single test.

	Parameters
	
	none

	Return Value
	
	The index of the current physical client for the current test.

vclientindex()

	Description
	
	For any given test, on each WCAT Client each virtual client will be assigned an index between 0 and vclientcount()-1, inclusive. This index may change between test runs but will remain constant for the duration of a single test.

	Parameters
	
	none

	Return Value
	
	The index of the current virtual client on the current physical client.

starttime()

	Description
	
	Returns a string representation of the GMT time in same format as the following example: “Sun, 01 Jan 2000 23:59:59 GMT”. This format is valid for use in the “If-Modified-Since:” HTTP header. The time returned is the time on the current WCAT Client when the WCAT controller connected to the current client. Note: if the clocks on different WCAT Client machines are not synchronized then this function will return different times on different WCAT Client machines.

	Parameters
	
	none

	Return Value
	
	Start time of the test on the current WCAT Client.

add(x, y)

	Description
	
	Adds two integers together.

	Parameters
	x
	First integer.

	
	y
	Second integer.

	Return Value
	
	x + y

subtract(x, y)

	Description
	
	Subtracts one integer from another.

	Parameters
	x
	First integer.

	
	y
	Second integer.

	Return Value
	
	x - y

multiply(x, y)

	Description
	
	Mutliplies two integers.

	Parameters
	x
	First integer.

	
	y
	Second integer.

	Return Value
	
	x * y

divide(x, y)

	Description
	
	Divides one integer from another.

	Parameters
	x
	Numerator

	
	y
	Denominator

	Return Value
	
	x / y

Section 11. Extending WCAT Functionality
WCAT supports extensibility through simple C DLLs. Custom functions can be included using the library element in the scenario file. User functions can accept an arbitrary number of parameters and have a definition similar to the “argv” and “argc” mechanism used for the main function in simple command line applications. User functions always return the type dynstring and can only be invoked for attribute assignments of the type dynstring. Extending WCAT involves a few steps:
1. Create a windows DLL using the C programming language.

2. Implement the user functions.

3. Export desired user functions.

4. Compile the DLL.

5. Copy it to the WCAT Controller installation directory.

6. Run “wcat.wsf –update …” to install the DLL to all the WCAT client machines.

7. Add the library element to the scenario file to use the DLL and create an alias for each exported function to be used.

8. Invoke the user functions from the script where needed.

9. Execute WCAT via “wcat.wsf –run …”

WCAT Return Codes

The header file needed for inclusion in custom WCAT DLLs source code can be found in the WCAT installation directory under “src\wcat.h”. Currently, it defines the constants needed to return status codes to WCAT. See the table below for details on WCAT return codes.
	#ifndef _WCAT_H

#define _WCAT_H

#define WCATRESULT_ERROR (-1)

#define WCATRESULT_SUCCESS (0)

#define WCATRESULT_MORE_DATA_NEEDED (1)

#define WCATRESULT_NEXT_PACKET (2)
#endif // define _WCAT_H

wcat.h contents

	WCATRESULT_ERROR
	Reports to WCAT that a fatal error has occurred and that the entire test should be immediately terminated. No log file or indication of where a failure occurred will be given.

	WCATRESULT_SUCCESS
	Reports to WCAT that the function completed successfully and that execution of the test should continue normally. For a response handler, this means stop calling the handler with new data as it arrives.

	WCATRESULT_MORE_DATA_NEEDED
	For use in response handler functions only. Instructs WCAT that it should continue to call the handler with new data as it arrives. New data will be concatenated to a buffer which will be passed in each time the handler is called.

	WCATRESULT_NEXT_PACKET
	For use in response handler functions only. Instructs WCAT that the handler is done with the data in the buffer and that WCAT should discard the buffer and call the handler again with more data from the current response as it arrives.

User Functions
User functions are very useful for adding user specific context to a request such as user names, passwords, query strings or post data. Each virtual client maintains a single “context” pointer which can be used by a WCAT extension DLL to track anything. Only a single context pointer exists per virtual client and will be passed in to every function every time. The DLL code is free to modify the pointer as needed, but care must be taken to cleanup resources allocated for each function call. The user function receives parameters in the form of an array of strings and a count for the array, or “argv” and “argc”. All WCAT User functions can accept a variable number of parameters. It is the extension code’s responsibility to define parameter order.
User functions return a string value through the “result” parameter. This buffer must not be freed until the cleanup routine is called. The best way to keep track of memory that needs to be freed is to store the pointer in the context, and then free the memory on cleanup and reset the context pointer to NULL. WCAT virtual clients are single-threaded. Multiple virtual clients can be executing concurrently. Therefore, virtual client specific context does not need to be accessed in a thread-safe manner. However, any extension DLL global data may need to synchronized using locks or interlock operations.
	#include <windows.h>

#include “wcat.h”

// WCAT user function declaration
DWORD
foo_function (

 PVOID* context, // IN/OUT: reference to virtual client context pointer
 DWORD argc, // IN: Argument count
 PCHAR* argv, // IN: Array of null-terminated strings
 PCHAR* result // OUT: pointer to buffer containing result string
);

WCAT user function declaration
PVOID* context

The context is a pointer to a pointer that lives in the virtual client structure in WCAT. It is initialized to NULL when WCAT Client starts. The purpose of the pointer is to allow WCAT extension functions to have a place to store per virtual client data.
DWORD argc
This is the count of arguments passed to the user function. If the WCAT scenario file invokes a user function, “User(“foo”, “bar”);” then argc will be 2. The same function could be invoked “User(“foo”, “man”, “chu”)” which would cause argc to be 3.
PCHAR* argv

This is an array of strings. The length of the array is “argc” strings. Each string is NULL terminated. If the WCAT scenario file invokes the function, User(“foo”, “bar”), the argv[0] is “foo” and argv[1] is “bar” and argv[2] is an access violation.

PCHAR* result

This parameter allows a WCAT user function to return a string value to be used in a request. The user function should allocate this buffer and populate it. After the request has completed, the cleanup function will be called by WCAT Client. This is where the buffer should be freed or reclaimed. Return the new string value to WCAT by assigning *result = result_buffer.
Return value

· Return WCATRESULT_SUCCESS for success.

· Return WCATRESULT_ERROR for fatal errors. This will cause the WCAT test run to terminate ungracefully.
User Cleanup Functions
User cleanup functions are designed to allow resources allocated by a function to be freed after WCAT is finished with them. The following declaration is used for cleanup functions. Cleanup functions are specified for a particular user function. The same exported cleanup function can be used for multiple user functions. Typically, this is cleanup for the result string returned in the initial user function call.
	#include <windows.h>

#include “wcat.h”

// WCAT user cleanup function

DWORD

foo_cleanup (

 PVOID* context

);

WCAT user cleanup function definition

PVOID* context

The context is a pointer to a pointer that lives in the virtual client structure in WCAT. It is initialized to NULL when WCAT Client starts. The purpose of the pointer is to allow WCAT extension functions to have a place to store per virtual client data.

Return value

· Return WCATRESULT_SUCCESS for success.

· Return WCATRESULT_ERROR for fatal errors. This will cause the WCAT test run to terminate ungracefully.

Cleanup Function Invocation Order

The cleanup routine will usually be called immediately after the call to the user function. However, there are conditions where this will not occur. Care must be taken that the virtual client context of another user function is not mistakenly freed before its cleanup function is invoked. When a user function is called as part of another user function’s parameter list, multiple functions may be called before any cleanup functions are called. Take the example scenario file below.
	scenario

{

 library

 {

 dll = “wcat.dll”;

 function

 {

 name = “foo”;

 export = “foo_function”;

 cleanup = “foo_cleanup”;

 }

 function

 {

 name = “bar”;

 export = “bar_function”;

 cleanup = “bar_cleanup”;

 }

 }

 transaction

 {

 id = “simple foo bar”;

 weight = 100;

 request

 {

 url = foo() + bar();

 }

 }

 transaction

 {

 id = “recursive foo foo”;

 weight = 100;

 request

 {

 url = foo(foo());

 }

 }

 transaction

 {

 id = “recursive foo bar”;

 weight = 100;
 request

 {

 url = bar(foo());

 }

 }

}

Example scenario file containing user functions and cleanup functions
In the above example, there are three transactions. The first transaction labeled “simple foo bar” will generate calls to the foo and bar user functions and cleanup functions in the following sequence:
1. foo_function(…)

2. foo_cleanup(…)

3. bar_function(…)

4. bar_cleanup(…)

The second and third transactions labeled “recursive foo foo” and “recursive foo bar” will generate a different function/cleanup call sequence:

“Recursive foo foo” call sequence:

1. foo_function(…)

2. foo_function(…)

3. foo_cleanup(…)

4. foo_cleanup(…)

“Recursive foo bar” call sequence:

1. foo_function(…)

2. bar_function(…)

3. bar_cleanup(…)

4. foo_cleanup(…)

Response Handlers
WCAT supports response filter routines that are invoked for every packet of data that WCAT Client receives. This means that a single handler may be called multiple times for a single request. The response buffer is passed into the handler function which can then parse the results and extract useful information. The information should be persisted using the virtual client context. After finishing parsing, the response handler can return 3 result codes to indicate varying states of completion. If the function returns, “success” then WCAT will no longer invoke the handler for subsequent packets received for the current request. Returning “more_data_needed” will cause WCAT to invoke the handler again after concatenating new data to old data. Returning “next_packet” will instruct WCAT to discard the current buffer and return only new data the next time data is received. The “next_packet” option is potentially desirable for very large responses that won’t fit into memory.
	// WCAT response handler function definition

DWORD

bar_handler (

 PVOID* context

 DWORD argc,

 PCHAR* argv,

 PCHAR buffer,

 SIZE_T len,

 SIZE_T sequence

);

WCAT response handler function definition

PVOID* context

The context is a pointer to a pointer that lives in the virtual client structure in WCAT. It is initialized to NULL when WCAT Client starts. The purpose of the pointer is to allow WCAT extension functions to have a place to store per virtual client data.

DWORD argc

This is reserved for future use.

PCHAR* argv

This is reserved for future use.

PCHAR buffer
This is a buffer of characters allocated by WCAT that contains the response from the web server.
SIZE_T len
This is the length of the data in the buffer in bytes, including any null terminators.

Return value

· Return WCATRESULT_SUCCESS to indicate that the function has successfully retrieved all needed data from the response and that this handler should no longer be invoked for the current request even if more data is available.
· Return WCATRESULT_MORE_DATA_NEEDED to instruct WCAT to invoke the handler again after receiving more data and concatenating it to the buffer.
· Return WCATRESULT_NEXT_PACKET to instruct WCAT to invoke the handler again but to discard all data in the current buffer. Instead, only new data will be in the buffer on the subsequent call. This is useful when response sizes are very large and may not fit into main memory.
· Return WCATRESULT_ERROR for fatal errors. This will cause the WCAT test run to terminate ungracefully.
Using WCAT Context

WCAT stores a context pointer in its private virtual client structure. This pointer is designed to be used by extension DLLs to manage context and track per-virtual client state. A useful function of context is to store buffers allocated as return strings for later cleanup.

	DWORD foo_function (PVOID* context, DWORD argc, PCHAR* argv, PCHAR* result)

{

 PCHAR return_string = NULL;

 // error out if context is not NULL because this simple example does not support
 // recursive calls…

 if(*context != NULL)

 {

 return WCATRESULT_ERROR;

 }

 // allocate the string to return

 return_string = strdup(“foo”);

 if(return_string == NULL)

 {

 return WCATRESULT_ERROR;

 }

 // store the string in context so that the cleanup function will

 *context = (PVOID)return_string;

 // set the return result

 *result = return_string;

 // return success

 return WCATRESULT_SUCCESS;

}

DWORD foo_cleanup (PVOID* context)

{

 if(*context != NULL)

 {

 free(*context);

 *context = NULL;

 }

 return WCATRESULT_SUCCESS;

}

WCAT example of using the context to cleanup an allocation

Section 12. Interpreting WCAT Output
WCAT outputs XML files after a test completes. The XML files can be viewed using Internet Explorer and an XSLT file called “report.xsl” which is distributed with WCAT and can be found in the installation directory.
Opening a WCAT XML File

Copy report.xsl to the same directory as the output XML file. Open the XML file in Internet Explorer and the report should automatically display. The XML file can be parsed by custom tools for reporting purposes.
Summary Section

The summary section contains the most commonly requested data. See the table below for details on each field.
	Field
	Description

	Transactions / sec
	Total rate of WCAT transactions executed over the duration of the test. A transaction can consist of multiple individual HTTP requests.

	Pathlength / Transaction
	The amount of CPU, in kilocycles or milliseconds that each transaction consumed on average. Kilocycles are measured in CPU kilohertz. For example, if a 1.0 Ghz CPU is saturated for the full duration of a test with a transaction rate of 10 transactions per second then each transaction consumed an average of 1 Ghz / 10 transactions, or 1000 kilocycles per transaction. Note that pathlength is not comparable between different machine architectures.

	Context Switches / Transaction
	Number of thread context switches that occurred per transaction. Context switches are not desirable on a web server because they adversely affect performance. Consider it a red flag if this value increases after a change to the web server.

	Requests / sec
	Total rate of HTTP requests executed over the duration of the test.

	Pathlength / Request
	Average pathlength per request. (see Pathlength / Transaction for details on what pathlength is)

	Context Switches / Request
	Context switches per request. A rate higher than 1 per request at 100% CPU utilization could indicate locking or scaling problems.

	% Processor Time
	Percent utilization of the processors on the web server. 100% indicates full saturation of all processors/cores on the Web Server. Note: This metric is only for the first web server monitored.

	MBits / sec
	Approximate megabits per second of HTTP traffic received by the WCAT Clients.

	Total Errors
	Total number of errors including unexpected status codes and any network socket errors.

 WCAT Summary Section Field Description

QFE Section

If the “-x” flag is passed to wcctl.exe, then WCAT will automatically query all the updates installed on a target machine. This is sometimes useful for tracking whether a particular update or QFE has had an impact on overall performance.
Performance Counters Section

The performance counters specified in the Settings file are gathered if the “-x” flag is passed to wcctl.exe. Each performance counter is requested at regular interval rates and is displayed as an average, maximum and minimum. Clicking on the “+” icon on the left of any performance counter will zoom into that counter and display all data points gathered along with time stamps.
Registry Settings Section

Optionally, WCAT can query registry settings on the target web server. These are displayed in the registry section.
Response Time Analysis Section

WCAT keeps track of time-to-first-byte and time-to-last-byte for every request and adds them to a histogram. Once the test is complete, the histogram is used to compute percentiles and these are displayed in the response time section. Time-to-first-byte is the delta in milliseconds between when WCAT was just about to send the request to when it received the first byte of data. Time-to-last-byte is the time-to-first-byte plus the time delta between receiving the first byte and receiving the last byte. To determine quality of service, look at the 95% response time. If this is greater than 1000 milliseconds then this may be an indication that some pages are “slow”. If 95% percentile response time is greater than 5000 milliseconds, then users will likely perceive a website as slow.
Transaction Statistics Section

This section is a per-transaction drill down. Statistics such as maximum response time, number of requests, number of errors, etc are displayed here.
Per-Client Breakdown Sections

Sometimes a single client may be improperly configured. The per-client breakdown gives overall statistics on each client to assist in diagnosing client-specific problems.
Server Information Section

A short table of information on the server such as number of processors, available memory, processor speed, etc.
Test Information Section

Test environment data such as warmup, duration and cooldown data, number of clients, virtual clients, etc.
Appendix A: HTTP Requests
This appendix describes how an HTTP request is sent to a web server and how the web server responds to the request.
· HTTP 1.0 is described in RFC 1945 available at http://www.w3.org/Protocols/rfc1945/rfc1945
· HTTP 1.1 is described in RFC 2616 available at http://www.w3.org/Protocols/rfc2616/rfc2616.html

An HTTP Request is sent in plaintext to a web server. It describes the action the web server is to perform, what file to perform the action on, the version of the HTTP protocol being used, as well as any additional headers and or content sent along with the request. Normally data is sent over port 80 to a web server. The basic structure of an HTTP request is as follows:
	GET /url.hrm HTTP/1.0\r\n (Status line
HeaderName1: HeaderValue1\r\n (Headers
HeaderName2: HeaderValue2\r\n (Headers

\r\n (End of request

Basic Structure of an HTTP Request

The first line of the request is known as the “Status Line”. This is the only required part of an HTTP request. It consists of four pieces, the VERB, the URI, the HTTP version number and a terminating Carriage return/line feed (crlf) character sequence.
In the example above, the VERB is GET. The verb describes what action the web server is to take. In this case it asks the web server to retrieve the file specified. See HTTP Verbs for more information on verbs used by web servers.

The URI in the example above is “/url.htm”. URI is an acronym for “Uniform Resource Identifiers” and is also commonly called “URL”. The leading “/” represents the root directory of the web server. “url.htm” represents a file of that same name located in the root directory.
Parameters may be passed as part of the URI through a mechanism referred to as the “query string”. Query string parameters are separated from the URI by a “?” and are separated from each other with an “&”. The parameters can be names or name-value pairs separated by an “=”.

	URI
	Description

	/

	Refers to the default document at the root of the web server. On a Windows Server web server, this is typically a file named, “default.htm”

	/script.asp
	Refers to “script.asp” from the web server root.

	/script.asp?foo
	Refers to “script.asp” in the web server root. Pass to the script a query string named “foo” with no value.

	/script.asp?foo=bar

	Refers to “script.asp” in the web server root. Pass to the script a query string named “foo” with the value “bar”.

	/script.asp?foo=bar&man=chu

	Refers to “script.asp” in the web server root. Pass to the script a query string named “foo” with value “bar” and another parameter “man” with value “chu”.

Example URLs

HTTP/1.0 specifies which HTTP version is being used. Currently only 2 versions are in use, HTTP/1.0 (RFC 1945) and HTTP/1.1 (RFC 2616). HTTP/0.9 was a standard previously used on the internet, but this has been deprecated. See http://www.w3.org/Protocols/HTTP/HTTP2.html for more information on HTTP/0.9.

Header information may be passed in the request. Header information can specify how to handle the request, what kind of behavior to exhibit with the request (for example how to handle the connection) or may specify additional data appended to the request. For more information on what headers may be passed with a request, see HTTP Request Headers. Each line of text in an HTTP request is ended with a CRLF (carriage return line-feed), represented in text as “\r\n”.
Finally the request body end is marked with a final CRLF combination. More data may follow the request body; however the web server needs to know how to interpret it through header and/or HTTP Verb information.

Appendix B: HTTP Responses
The HTTP Response sent back by the web server can vary depending on the content being requested. Generally the response comes back with status information followed by the body of the response. Here is an example of a typical response from a hello world HTML file.
	HTTP/1.0 200 OK\r\n

Context-Length: 11\r\n

\r\n

Hello World

Basic Structure of an HTTP Response

The response status code provides information about the status of the request. Typically this is “200 OK” which signifies that the request was returned successfully. For more information see HTTP Response Status Codes.

The response can include any number of HTTP Response Headers. These provide more information to the client on how to handle the response.

Appendix C: HTTP Request Verbs
HTTP Verbs describe the action for the web server to take. The most common 2 used on the internet are the verb GET and the verb POST, although others exist. Here is a list of the verbs that may be used and what they signify. Currently WebCAT only supports GET and POST.
	Name
	Description
	Supported by WCAT?

	GET
	Requests a URI from the web server. How the web server handles the request may change depending on the specified headers.
	yes

	POST
	Requests a URI from the web server and specifies that additional data is appended to the current request.
	yes

	PUT
	Specifies that the web server should save the additional data sent under the name specified in the URI. The web server must have security permissions that allow this type of operation.
	no

	HEAD
	Specifies that the web server should process the URI as a get request, but only return the header information that normally would be sent back to the client, omitting the data from the URI itself.
	no

	TRACE
	Specifies that the web server should send back the data it received in the request. Used for testing purposes, can be used to make sure the web server is receiving all information properly.
	no

	OPTIONS
	Specifies that the web server should return what communication options are available for the specified URI. The format of this response may change depending on header information sent.
	no

	DELETE
	Specifies that the web server should delete the URI specified from the web server. Permissions must be set properly on the web server to allow for this type of operation.
	no

	CONNECT
	Reserved for proxy servers that can be switched to being a tunnel.
	no

Common HTTP Headers
Appendix D: HTTP Request Headers
HTTP request headers are a way of sending additional information to the web server. They may define how the web server should behave, set restrictions on what data to send back to the client, handle authentication, or alter the response. HTTP headers are sent after the status line. HTTP headers are usually of the following format:

	Header1: Value1\r\n

Header2: Value2\r\n

\r\n

Basic Structure of HTTP Headers
This format specifies the name of the header, its value, and ends with a Carriage Return/Line Feed (CRLF) combination. The end of the headers section is signaled by another CRLF combination. Some of the common examples of HTTP headers are as follows. See RFC 2616 - Headers for additional header information.

	Name
	Description

	Connection
	Instructs the web server to keep the connection alive or to close it after a request. Valid values are: “keep-alive” or “close”.

	Host
	The name of the remote server or website to which the request is being made.

	Content-Length
	The number of bytes of data being sent after the HTTP headers. Used in a POST request and in almost all responses from a web server.

	Accept
	Mime or file types that the browser can accept.

	Accept-Encoding
	Encoding format that the browser can accept (i.e. zip, plaintext, jpg, etc…)

	If-Modified-Since
	Instructs the web server to check the date specified and if the page has been updated since that date to send a new copy, otherwise to send a “Not Modified” directive.

	User-Agent
	A string representing the client making the request. Usually used to specify the browser, such as IE/Mozilla or Netscape.

Common HTTP Headers
Appendix E: HTTP Response Status Codes
For every HTTP request, the web server will return a status code. Each status code consists of an integer number followed by a short text name. In a simple GET request, a “200 OK” indicates that the file has been retrieved successfully. The following table lists some common status codes.
	Status Code
	Description

	200 OK
	The operation completed successfully, and any data that is available is returned with the response.

	301 Moved Permanently
	The resource requested has been moved to a different location specified by the Location header passed with the response. The client should be updated to reflect this change.

	302 Found
	The requested resource is located in a temporary location specified by the Location header passed with the response.

	304 Not Modified
	Used in response to an If-Modified-Since directive, notifies the client that the content of the resource requested has not changed since the date passed in the request, and that the client may use its’ local copy if available.

	400 Bad Request
	The syntax of the request was malformed and not understood by the web server.

	401 Unauthorized
	The client lacks permission to access the resource specified, and may need to authenticate for permission.

	403 Forbidden
	The server refuses to fulfill the request and authorization will not help.

	404 Not Found
	The resource specified was not found on the server.

	500 Internal Server Error
	An error occurred on the web server which is not the client’s fault.

	503 Server Unavailable
	The web server is unable to satisfy the request. This often happens when a web server has reached some limit (maximum concurrency, memory or CPU) or a dependency has failed (database backend, network, etc).

Common HTTP Status Codes
Appendix F. Example Settings File
settings

{

 // these counters will monitor the web server under test

 counters

 {

 interval = 10;

 counter = ‘Processor(_Total)\% Processor Time’;
 counter = ‘Process(w3wp)\Private Bytes’;

 counter = ‘Network Interface(Intel[R] PRO_1000 MT Desktop Adapter)\Bytes Total/sec’;
 counter = ‘Physical Disk(1 E:)\Avg. Disk Queue Length’;
 }

 // these counters will be gathered from the first wcat client

 counters

 {

 interval = 10;

 host = “wcat_client1”;

 counter = ‘Processor(_Total)\% Processor Time’;

 counter = ‘Process(wcclient)\Private Bytes’;

 }

 // the following registry element will retrieve a registry setting

 // from the web server.

 registry

 {

 path = ‘System\CurrentControlSet\Control\FileSystem’;

 name = "NtfsDisableLastAccessUpdate";

 type = REG_DWORD;
 }

}
Appendix G. Example Scenario File
scenario

{

 warmup = 300;

 duration = 300;

 cooldown = 30;

 default

 {

 setheader

 {

 name = "Connection";

 value = "keep-alive";

 }

 version = HTTP11;

 statuscode = 200;

 close = ka;

 }

 transaction

 {

 id = "root transaction";

 weight = 100;

 request

 {

 url = "/";

 }
 request

 {

 url = "/logo.jpg";

 }
 request

 {

 url = "/button1.jpg";

 }
 request

 {

 url = "/button2.jpg";

 }
 sleep

 {

 delay = 1000;

 }

 close

 {

 method = reset;

 }

 }
 transaction

 {

 id = "login transaction";

 weight = 50;

 request

 {

 url = "/login.aspx?user=foo&password=bar";

 }

 }

}
Appendix H. Http References
· RFC 2616 (HTTP 1.1 specification)

2

_1257746050.vsd

_1257746053.vsd

_1257746055.vsd
WCAT Clients

Web Server

Database Server

Network Switches

WCAT Controller
Network Router

WCAT Clients

_1257746057.vsd
Text

_1257746058.vsd
Text

_1257746056.vsd

_1257746054.vsd
Database Server
WCAT Controller
WCAT Client

Web Server

Network Switch

_1257746051.vsd

_1257746048.vsd

_1257746049.vsd

_1257746047.vsd

